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Abstract. The paper presents briefly the concept of controlling dynamic response of the 

thin-walled structures by filling them with compressed air and its controlled release during 

the impact process. The succesful result of using this method is strongly dependent on a 

proper pressure adjustment inside the structure according to the impact type and direction.  

The paper is focused on developing strategy for optimal distribution and release of pressure 

and corresponding software tools. This software contains procedures for numerical 

simulation of the impact process and optimization algorithms. Considered objective functions 

are formulated basing on conditions concerning: possibly soft absorption of the impact, 

dissipating the highest amount of energy, using the lowest pressure values, achieving assumed 

deformation of the structure. Various methods for solving derived optimization problems are 

proposed. Solutions are obtained for several impact scenarios and structure geometries. The 

results prove that pressure adjustment strategy has a significant influence on the deformation 

process and on energy absorption. Conducted simulations indicate that pressurised structure 

can easily change its dynamic properties and is possible to adapt to variable load cases and 

impact types. 

1 INTRODUCTION 

Thin-walled structures are commonly used in car and mechanical industry because of 

their huge durability, stiffness and small weight. They efficiently absorb energy of the 

front impact due to the process of folding. Estimation of critical dynamic forces and 

dissipation capabilities for several types of thin-walled structures obtained by simplified 
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analytical models can be found in classical crashworthiness literature cf. Johnes
(1)

. The 

problem of increasing the load capacity of such structures under axial loading by using 

pressure, structural fuses and pyrotechnik detachable connectors was successfully 

examined by Gren
(2)

, Knap
(3)

, Ostrowski, Griskevicius and Holnicki-Szulc
(4)

.  

In this paper we focus our attention on lateral impact where substantial difficulties 

might appear. The thin-walled structure undergoes large deformations and local plastic 

yielding but only small part of the impact energy can be dissipated. Significant 

improvement of the structure properties by filling it with compressed air and its 

controlled release was proposed by authors in their previous paper on this topic cf. 

Graczykowski, Chmielewski, Holnicki-Szulc
(5)

. Filling with gas in the initial stage of the 

lateral impact results in increasing the load capacity of the structure and prevents its huge 

deformations. The purpose of the controlled release of pressure is to dissipate energy 

accumulated in gas and to confine accelerations to admissible level. Initial value and 

change of pressure in time must be adjusted according to the type and direction of impact. 

Additional advantages can be achieved by dividing structure into pressurized packages 

and controlling values of pressure in every cell separately. Compressed air has also a 

beneficial influence on the buckling behavior of the structure, since it increases the value 

of critical force. These features of the pressurized structures were confirmed by 

experiment conducted on aluminium can. Structures adapted to impact by using 

compressed gas will be further called Adaptive Pressurized Structures (APS).      

2 CORRESPONDING OPTIMIZATION PROBLEMS 

This paper is aimed at developing a strategy for optimal distribution and release of gas in 

pressurized packages. For this purpose the above considerations are formulated as 

optimization problem. The structure being optimized is a simple two dimensional frame 

(cf. Fig.1) which could serve as a basis for a car door design. The structure may be 

divided into various number of packages and it may have clamped or sliding supports. 

The frame is loaded on the upper beam which is modeling lateral (non-axial) impact. 

Material and geometrical nonlinearities are taken into account. The material is elasto-

plastic with the hardening, large deformations of the frame are considered.  
 

 

 

 

Figure 1: Structure divided into pressurized packages considered in the optimization problem. 

The optimization is performed with respect to changes of pressure in every package. The 

objective function is based on the following criteria: dissipation of the highest impact energy, 

possibly soft absorption of impact, applying the smallest pressure values for given impact, 
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achieving assumed deformation of the structure. The subsequent optimization problems, 

together with methods of solution and results are presented in the further part of the paper.  

Derived objective functions and constraints could have a fairly complicated implicit form 

since they are obtained from nonlinear dynamic analysis. Constraints are formulated basing on 

kinematic conditions imposed on maximal displacement and on the shape of frame 

destruction.  

Solving mentioned problems requires using Finite Element software and optimization 

procedures. In this case a linkage between Ansys and Matlab packages is effectively used. The 

major application is Matlab, in which model parameters are stored and a batch file for FEM 

analysis is created. Ansys is launched within Matlab to conduct nonlinear transient dynamic 

analysis by means of Newmark algorithm and Newton-Raphson procedure, cf.
(6)

 and to 

calculate value of the objective function. Afterwards this function is minimized by Matlab 

built-in optimization procedures.  

3 DISSIPATION OF THE HIGHEST ENERGY 

3.1 Mathematical formulation 

This chapter concerns examination of overall properties of the pressurized structure. On 

this stage we do not assume a detailed impact scenario, but we investigate how much we can 

improve the structure by pressurizing. Hence the objective function of the optimization 

problem will be based on condition of dissipating the highest impact energy. 

The dynamic system is described by well-known equation of motion in its nonlinear form 

with initial conditions imposed on unknown function and its first derivative: 

),()()()()( tqFtqqKtqCtqM =++ &&&                                              (1) 

                                                 00 )0(,)0( qqqq && ==     

The impact subjected to the structure upper beam is modeled by concentrated mass of the 

hitting object which is included in mass matrix and its velocity being one of the initial 

conditions. We assume that the impact velocity is established so the load capacity will be 

measured only by the hitting object mass. Values of pressures inside the packages 

influence right hand side load vector F and displacements q likewise. Thus, dynamic 

properties of the structure can be controlled by means of internal pressure. The solution to 

the problem (1) can be written by implicit nonlinear vector function ),,( tm pq  where m is 

the mass of the hitting object, vector { })(),...,(),( 21 tptptp n=p  contains functions 

describing change of pressure in every cell. Function ),,( tmqm p  is a component of 

),,( tm pq and denotes displacements of the node to which impact is subjected. We will often 

use ),,( stoptm pq  indicating deformation of the structure at the moment of braking the mass 

i.e. at time when velocity of the hitting object approaches zero for the first time. Arbitrary 

assumed set of all vectors of pressures will be denoted 
pΩ and set of all values of mass 
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mΩ . Both sets are arbitrary restricted to positive values. Additionally values of functions 

)(tp  being components of vector  pΩ∈p  can not exceed a fixed upper limit. 

Let us introduce two scalar functions describing deformation of the structure. The 

function  ),,( tmD p  measures distance between concentrated mass and the closest node of 

the lower span at certain moment in time: 

)),,(),,,((),,( xlxmx tmqtmqdisttmD ppp =                                         (2) 

The second function describes the largest penetration i.e. the largest vertical displacement 

of the lower beam which is expected to occur at the moment of braking the mass 

),,(max stoptmq p . We will use kinematic approach, which means that the conditions 

defining destruction of the structure will be based on its deformation shape. The 

deformation of the structure is assumed to be admissible if there is no collision between 

the mass and the lower span before the moment of braking the mass and when maximal 

displacements of the lower span do not exceed limit value. We can define set qS  which 

contains admissible deformation of the frame as: 

{ :conditionssatisfying),,( tmSq pq=                                              (3) 

     )t(0,tfor0),,()1 stop∈>tmD p  

                                       }admstop qtmq ≤),,()2 max p  

Engineering formulation of the optimization problem is as follows: find maximal mass 

which can be subjected to the structure appropriately filled with pressure and do not 

violate kinematic conditions imposed on structure deformation. Thus we are searching for 

maximal mass and corresponding distribution of pressure as well. Straightforward 

mathematical formulation can be written: 

Find: { }
qm Stmm ∈),,(max , pqp                                                    (4)  

                                              where qS  is defined by (3) 

The initial set of design variables pm Ω×Ω  is here strongly restricted by conditions (3) 

imposed on deformation. In many cases the above optimization task can not be solved 

efficiently. Let us simplify the problem (4) and rearrange it to a form more convenient for 

numerical calculations.  We can define function )(pmS  returning subset of 
mΩ  which 

contains values of mass causing admissible deformation after impact on the structure with 

assumed change of  pressures in all chambers: 

pmS Ω⊆)(p                                                                           (5) 

[ ]{ }
qm StmmmS ∈∈= ),,(,0)( max pqp  
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The scalar function )(pmΦ  will indicate load capacity of the structure i.e. maximal mass 

which can be subjected to the frame filled with given pressures. 

{ } [ ]{ }
qmm StmmmSm ∈∈=∈=Φ ),,(,0max)(max)( max pqpp                  (6) 

Using function )(pmΦ  the problem (4) can be decomposed into the form: 

Find: { } pm Ω∈Φ pp ,)(max                                                                    (7) 

                                     where [ ]{ }
qm Stmmm ∈∈=Φ ),,(,0max)( max pqp  

                                     and qS  is defined by (3) 

We can notice that formulation (7) contains of two separate stages. First, we have to find 

maximal mass causing admissible deformation and then maximum of this function over 

pressure. 

We will define limiting admissible deformations of the frame. A condition of distance 

between the spans being strictly positive is still satisfied when this distance approaches 

its minimum equal to zero exactly at the moment of braking the mass. Hence, we can 

write: 

{ :conditionssatisfying),,(1

stopSq tm pq=Γ                                       (8) 

                                              1) 0),,( =stoptmD p  

                                              2) 0
),,(

=
= stopttdt

tmdD p
 

                                              3) }0
),,(

2

2

>

= stoptt
dt

tmDd p
 

This approach lets us investigate only the time at vicinity of tstop  and not the whole time 

of the transient analysis and simplify corresponding formulas. The limit value of second 

condition introduced in (3) can be obtained by rewriting it in the form of equality:  

{ :conditionsatisfying),,(2

stopSq tm pq=Γ                                       (9) 

                                              }admstop qtmq =),,(max p                                                                                    

By analogy to (5) we can define a scalar function of pressure )()( 11 pp mSm =Γ  which 

returns one-element subset of )(pmS  containing mass causing contact of the spans at the 

moment of braking the mass:  

                                    )()(1 pp mSm S⊆Γ                                                        (10) 
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     [ ]{ }1

max

1 ),,(,0)( SqstopSm tmmm Γ∈∈=Γ pqp  

and scalar function of pressure )()( 22 pp mSm =Γ  which returns a one-element subset of 

)(pmS  containing mass causing limit value of lower span displacement at the moment of 

braking the mass: 

                                  )()(2 pp mSm S⊆Γ                                                                     (11) 

                                          [ ]{ }2

max

2 ),,(,0)( SqstopSm tmmm Γ∈∈=Γ pqp  

To find function )(pmΦ  we have to choose a smaller of the functions )(1 pSmΓ and )(2 pSmΓ : 







Γ>ΓΓ

Γ≤ΓΓ
=Φ

)b()()()(

)a()()()(
)(

212

211

ppp

ppp
p

SmSmSm

SmSmSm

m
when

when
                               (12) 

Taking into account the condition (12) we can divide the set of pressures pΩ  into two 

subsets 1

pΩ  and 2

pΩ  where (12a) and (12b) are fulfilled, respectively. 

The second step in solving the optimization problem (7) is finding maximum of 

)(pmΦ . Using for this purpose gradient based methods is not effective since function 

)(pmΦ  is not smooth as composed of functions 1

SmΓ  and 2

SmΓ  . The maximum  )(pmΦ  which 

indicates maximal mass is expected to be achieved when both limit conditions imposed on 

deformation are fulfilled. This assumption is based on the fact that for insufficient 

pressure load capacity is exhausted by collision of the beams while for excessive pressure 

by exceeding the limit displacements. Hence maximum mass can be found for pressure 

vector 112

pp Ω⊂Ω∈p  found as a solution of the equation: 

                                          )()( 21 pp SmSm Γ=Γ                                                       (13) 

Another method of finding subset 12

pΩ  is calculating deflection of lower span caused by 

mass )(1 pSmΓ : 

),),(()( 1

max

1

max stopSm tqq ppp Γ=                                             (14) 

and comparing to the limit value.  

admqq =)(1

max p                                                         (15)                                            

Equation (15) is more convenient for numerical calculations than equation (13). Having  

)(1 pSmΓ  calculated )(1

max pq  is obtained directly from solution of (1) while calculating )(2 pSmΓ  

requires solving an inverse problem. Finally, the optimization task assumes the form:  

Find: { } 121 ,)(max pSm Ω∈Γ pp                                                     (16)  
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                                                  where 12

pΩ is defined by (15) 

Values of mass corresponding to each element of 12

pΩ  are causing deformation with 

contact of the spans and limit displacement of the lower beam at the moment of braking 

the mass. We manage to restrict the initial set of optimization variables pm Ω×Ω  to the 

set 12

pΩ  containing vectors of pressure appropriately preselected to give maximal value of 

the corresponding mass.    

3.2 Numerical example 

Derived mathematical formulation can be applied for finding optimal distribution of 

pressures in three-cell pressurized structure fixed with no sliding (cf. Fig. 3). The loading 

is performed by object hitting the frame in the middle of the upper span with initial 

velocity equal to 2m/s. We assume that pressures inside packages do not exceed 1600 

kN/m and that they are constant during the whole analysis. Impact subjected to this 

structure causes large deformations resulting in change of packages capacity which must 

be taken into account. To keep the pressure on constant level we have to release the 

volume of air equal to change of chamber capacity e.g. by opening exit valves. Vector p 

has two constant components p1 and p2 which indicate pressures in lateral and middle 

cell, respectively. Hence, introduced functions of pressure may be illustrated as 

corresponding surfaces, see Fig. 2a. Initially, we have to calculate the function (surface) 

of mass causing collision of the beams )(1 pm , which for low pressures is smaller than 

mass causing limit displacement )(2 pm . This procedure is expensive numerically because 

it requires multiple solving of inverse nonlinear dynamic problem. A surprising linearity 

of this surface will be effectively used later on. In the second step we find the 

corresponding function of maximal lower span displacements )(1

max pq . Intersection of this 

surface with the constant value of limit displacement (equal here 0,18m) constitutes line 
12

pΩ  which is the solution of equation (15) and (13) as well. This line is projected into 

surface )(1 pm  for the purpose of finding maximal mass, see Fig. 2a. Finally the load 

capacity is increased 6,1 times and is achieved for the maximal pressure p1, cf. Table 1. 

 

       )0(1p  

[kN/m] 

)0(2p  

[kN/m] 

)(1 stoptp  

[kN/m] 

)(2 stoptp  

[kN/m] 

max

1q  

[m] 

stopt  

[s] 

m 

[kg] 

0 0 0 0 0,04 0,152 7596 

1600 1147 1600 1147 0,18 0,213 46374 

400 3925 0 0 0,18 0,265 68489 

Table 1. Comparison of structure load capacity for different values of pressure (central impact) 
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The second case considered concerns linear decrease of pressure in all packages. The 

time when pressure approaches zero is assumed to be equal to the time of braking the 

mass )(1 pm . This time is calculated beforehand and changes within the range 0,15 - 0,3s 

according to the initial values of p1 and p2, which are limited to 4800 kN/m. Both 

surfaces in Fig. 2b are calculated in terms of vector of initial pressures { }
21, pp=0p . In 

this case, the function )( 0

1 pm  achieves higher values than previously. The shape of 

surface )(1

max 0pq  is more sensitive to the value of pressure p1, which results in different 

shape of line 12

pΩ , see Fig 2b. The highest mass is 9,01 times larger than the initial one 

and it is found for low value of pressure p1. Detailed results for both cases are presented 

in Table 1 and corresponding deformation of the structure is presented in Fig. 3.  

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Surfaces )(1 pm and )(1

max
pq   in terms of non-dimensional pressure p , corresponding to the cases: 

 a) constant value of pressure, p  = p/(100kN/m);  b) linear decrease of pressure,  
0

p = p0/(300kN/m). 

Both problems described above were also solved without a huge numerical effort 

coming from the necessity of calculating unknown functions for every possible value of 

)(1 pm  

p1 p2 

)(1 0pm  

 

p1 p2 

a) b) 

)(1
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p2 
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pressure. Functions finding mass )(1 pm  and corresponding displacement )(1

max pq  were 

defined in Ansys environment. Matlab built-in optimization procedure was used to find 

combinations of pressure for which function )(1

max pq  approaches limit value, what 

indicates line 12

pΩ . Another Matlab procedure was applied to find maximal mass on this 

line.  Although used functions have a complicated form, time of calculations was much 

shorter than in the case of subsequent searching through pressure area. 

        
 

 

 

 

 

 

 

Figure 3: Deformation of the optimally pressurized structure loaded by maximal mass: 

a) constant pressure; b) linear release of pressure 

Load capacity can be also examined in the case of impact situated over the left 

chamber. Kinematic criteria for admissibility of structure deformation remain valid. 

Initial load capacity of the structure is over 40% smaller than in the case of central impact 

and it is exhausted when collision between upper and lower beam occurs. Pressurizing 

central package without release is not beneficial, since it causes excessively large outside 

displacements in central package and decrease of distance between spans in lateral 

chambers. Pressurizing only right package has almost no influence on dynamic properties 

of the frame. Due to these facts only filling left package with compressed air will be 

examined precisely. Displacement of the lower span is the largest below left package but 

it remains relatively small (0,121m) even for highest arbitrary assumed pressure value of 

2500 kN/m and corresponding mass 52000 kg. Structure deformation is on the limit due 

to condition (8) as in the case without applying pressure. 

)0(1p  

[kN/m] 

)(1 stoptp  

[kN/m] 

maxq  

[m] 

stopt  

[s] 

m 

[kg] 

0 0 0,087 0,112 4350 

2500(max) 2500(max) 0,121 0,192 52000 

5000(max) 0 0,143 0,248 76000 

Table 2. Comparison of structure load capacity for different values of pressure (lateral impact) 

Similar situation occurs when linear decrease of pressure is assumed and time of 

pressure being zero is achieved at 
stopt . The most beneficial is pressurizing only left 

package. After applying maximal arbitrary assumed pressure equal initially 5000kN/m 

a) b) 
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mass of 76000 kg can be subjected to the structure. Load capacity is still exhausted due to 

collision of spans. Lower beam displacement is equal 0,143 m so it does not exceed limit 

value. When both left and central chamber are pressurized, load capacity is increased over 

18 times in comparison to the initial one and is equal about 79000kg. The necessity of 

pressurizing two packages and, by doing so, introducing more energy to the system is a 

great disadvantage of this second solution. 

In the two above investigated cases the optimal solution is not achieved on the line of 

intersection of two limit surfaces )(1 pm  and )(2 pm  because this line is situated outside 

the area of admissible pressures. In other words, the set of solutions of equation (15) 12

pΩ  

is not a subset of pΩ . Calculating )(1 pm  for the highest value of pressure 1p  is sufficient 

to find maximal load capacity of the structure. 

4 SOFT ABSORPTION OF THE IMPACT  

The second purpose of applying pressure into the structure is to alleviate the impact by 

changing structure stiffness during collision. In this section we will assume given scheme 

of impact so mass of the hitting object will not be design variable in further analysis. Our 

goal is to control displacement, velocity and acceleration of the hitting object. The most 

expedient trajectory is a second order curve. By using this curve we can obtain linear 

descent of the velocity and constant value of acceleration during the whole process. 

Displacement of the node with applied mass is assumed to change according to the 

equation: 

2

2
1

0)( attVtq
opt

m +=                                                       (17)   

where: initial velocity of the object smV /20 = , level of acceleration 2/20 sma −=  and 

time of the whole process st 1,0= . Assumed trajectory (17) must be always situated 

above initial displacement curve since applying pressure we cannot increase compliance 

of the structure. The advantage of using this procedure is reduction of penetration by 

hitting object. 

Mathematical formulation of the optimization problem can be written as follows: 

Find: { }
qStmt ∈Φ ),,())((min pqp                                                         (18) 

                                   where [ ] dttqtqt
opt

mm

tstop

2

0

)()())(( −=Φ ∫p  

and )(tqm
is the component of nonlinear implicit function ),,( tm pq . The objective function is 

defined here as an integral obtained from a difference between actual and assumed 

displacement calculated over a given time domain. This formulation has a variational form 

since the argument of the minimized functional is a function of pressure in terms of time. 

Such formulated problem seems quite difficult to solve since we have to search through 
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infinite number of functions )(tp  and assuming this function as a polynomial does not give 

satisfactory results. However, while using time integration within Finite Element Method we 

can discretize the objective function in a given time domain as we do it with function of 

displacements. This way we obtain decomposition of the initial optimization problem into 

series of simpler ones, where objective function and design variables are defined in every 

moment in time: 

[ ]2
)()())(( k

opt

mkmk tqtqt −=Φ p                                                 (19) 

The introduced optimization problem can be solved for several number of packages in 

the structure, however pressurizing only one of them is usually sufficient to fit both 

displacement curves. The most efficient is pressurizing the chamber to which impact is 

subjected. Structure here considered consists of only one package and has sliding support. 

A mass hitting the structure is equal to 500kg. Pressure in every single time step is 

adjusted to fit the displacement of the mass to the assumed curve. Results obtained from 

the previous steps are effectively used on the following ones. Ansys built-in procedures 

are applied to conduct optimization process. The resulting change of pressure is shown in 

Fig 4a. High value of pressure is necessary at the beginning of the impact and then the 

curve of pressure is declining gradually.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Results of the optimization: a) change of pressure in time; b) resulting acceleration of the hitted joint 

In this example the objective function was diminished almost to zero so the assumed 

and obtained curves overlap and the level of the acceleration is almost constant, see Fig. 

4b. It was possible since for adjusted values of pressure kinematic conditions imposed on 

a frame were not violated. Sometimes the necessity of keeping deformation of the 

structure in allowable range causes that objective function can not be obtained with such 

precision.                       

5 USING THE LOWEST VALUES OF PRESSURE  

The subsequent problem considered is adapting the structure to assumed impact (of 

energy not exceeding those found in Sec. 3) by using smallest possible inflation of the 

0
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structure or the smallest amount of introduced energy. The pressures will be adjusted 

under assumption that they are constant during the whole process, but then their release 

will be realized as planned in Sec. 4.  

Let us initially define space of our optimization problem. By analogy to (5) we can 

define function )(mS p  returning the subset of pΩ which contains pressure vectors causing 

admissible deformation after impact of the given mass: 

pp mS Ω⊆)(                                                                         (20) 

                                      { }
qp StmmS ∈= ),,()( pqp  

For the small value of mass set )(mS p  may overlap with whole set pΩ . For larger mass 

set of admissible pressures becomes smaller and may not contain point 0=p . In such 

situation pressurization of the structure is necessary to sustain given impact. Finally 

critical mass exists for which only one combination of pressures is possible (cf. Sec. 3). 

For mass higher than 
maxm  there is no solution of the problem considered. Pressure 

necessary to avoid beams collision is higher than pressure causing maximal deflection of 

the lower span.    

This time the objective function is expressed explicitly  by design variables and it is 

defined as a sum of pressures or a sum of their squares.  In the case of decreasing pressure the 

objective function is expressed in the form of an integral, cf. (21). Optimization problem can 

be defined in the following way: 

Find: { })())(min mS p∈Φ pp                                                                    (21) 

                               
iiVpt ∑=Φ ))((p  or 

ii Vpt
2)())(( ∑=Φ p  or 

                           dtVtpt ii

tend

)())((
0

∑=Φ ∫p  or  dtVtpt ii

tend

2

0

)())(( ∑=Φ ∫p  

where i=1...k and k is the number of cells in APS. The constraints imposed on admissible 

values of pressures defined by function )(mS p  remain nonlinear. Typical methods for 

such cases are based on searching of the admissible domain limit because maximum of 

the objective function is expected to be found there. Such methods are for instance 

moving along the boundary and tracking active constraints, cf.
(7)

  

By analogy to (10) we can define functions of mass )(1
mSpΓ  which returns subsets of 

)(mS p  containing pressures referring to deformations 1

SqΓ   

 )()(1
mSm pSp ⊆Γ                                                           (22) 

 { }11 ),,()( SqSp tmm Γ∈=Γ pqp  
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and scalar function of pressure )(2
mSmΓ  which returns subset of )(mS p  containing 

pressures referring to deformations 2

SqΓ   

                                   )()(2
mSm pSp ⊆Γ                                                           (23) 

 { }22 ),,()( SqSp tmm Γ∈=Γ pqp  

From the shape of plots in Fig. 2 we can deduct that boundary of set )(mS p  will consist 

of subsets )(1
mSpΓ , )(2

mSmΓ  indicating limit deformations and lines min

pΓ , max

pΓ  which 

arbitrarily restricts set pΩ . In general case, boundary of set )(mS p  is not smooth. 

Minimum of the objective function is expected to be achieved on the line (within set) 

)(1
mSpΓ since this line is located closest to the beginning of the pressures plane.  

We assume that the function )(1 pSmΓ  defined by (10) can be aproximated by ‘linear’ 

equation in the form: 

∑
=

+=Γ
k

i

iiSm paa
1

0

1
)(p                                                   (24) 

where 0a  is the mass which can be applied to the structure with no pressurization, ia  

indicates influence of the pressure 
ip  on the value of the maximal mass )(1 pSmΓ . Surface 

)(1 pSmΓ  can be approximated basing on only several known values of mass. To obtain 

better precision it can be also approximated by function of higher order. We have to 

calculate intersection of this surface with the surface of constant mass *
m  finding this way 

line )(1
mSpΓ :  

2

0
*

2

1

112

*

22110 )(
a

am

a

a
pppmpapaa

−
+−=⇒=++                               (25) 

The solution must be placed within admissible domain of pressures )(mS p . If the mass 

*
m  is close to 

maxm  found in Sec. 3 we have to search through the line (25) starting from 

point 01 =p  and check for each combination of pressures whether the condition 2

SqΓ  is 

not violated. Such situation may occur when line )(1 mSpΓ indicating lower limit of 

admissible domain intersects line 12

pΩ  where both limit conditions imposed on 

deformation are fulfilled. When this lines intersect twice or more we are dealing with 

optimization over domain which is not continuous. 

Further we will analyze three cell APS loaded in the middle of the upper span 

previously examined in Sec. 3. For the surface depicted in Fig 2a coefficients a found by 

the least squares method are equal: kg75960 =a , 
kN

mkg
a

⋅
= 736,41

, 
kN

mkg
a

⋅
= 009,272

. In this 
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example we will assume that kgm 40000*
=  which is lower than any other mass situated 

on line 12

pΩ  so we will search minimum sum of pressures applied along the line defined 

by (25) in the range of pΩ∈p . We obtain a problem of linear programming with 

objective function given by (26):  

21212211 2

0
*

2

1 )2(2)( VpVVVpVp
a

am

a

a −
+−=+=Φ p                                  (26) 

In this situation 21 aa <<  so the objective function is increasing in terms of 1p  and its 

minimum is achieved for 01 =p . Value of 2p  obtained from (25) is equal to 1199,7
m
kN . 

From formulation (26) we conclude that packages dimensions have significant influence 

on the results. It is planed to introduce packages dimensions as a design variable in future 

considerations. 

The same problem was also solved for objective function defined in quadratic form:  

 [ ] [ ] 2

1

2

1

22

2

2

1 )(2)()(2)()(2)(
2

0
*

2

0
*

2

1

2

1

a

am

a

am

a

a

a

a
pppp

−−
+−+=+=Φ p                        (27) 

where volumes of the packages were neglected since they are equal.. Function )(pΦ  

achieves its minimum for 
m

kNp 1,1031 = . Value of 2p  obtained from (25) is equal to 

1181,7
m
kN . Hence, the formulation of the objective function as a sum of pressure squares 

results in distributing small amount of pressure to lateral cells in optimal design.  

The problem was solved also for the frame with elastic partitions. Surface )(1 pSmΓ  was 

in this case more sensitive to the value of pressure 1p  and it was possible to absorb wide 

range of impact by using only this pressure. However, obtained results indicate that 

pressurizing middle package is the most beneficial.   

6 ASSUMED DEFORMATION OF THE STRUCTURE  

In the last issue, the considered objective function is based on final deformation. Our 

goal is to get all packages crushed i.e. obtain minimal distance between upper and lower 

beam in every cell (cf. Fig 5). In such situation the largest quantity of the gas has to flow 

out from the structure and the largest amount of energy is dissipated.  We control 

kinematics of the structure as in Sec. 4, however, the objective function (assumed 

deformation) is not defined in every moment in time. The second difference is that the 

deformation of the whole structure is assumed, not only displacements of one node.  

Mathematical formulation of the problem is given :  

{ }pttFind Ω∈Φ )())((min pp                                                    (28) 

∑
=

=Φ
n

i

xlxui tqtqDtwhere
1

))(),(())((: p    
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t = 0,44s  

a)  b)  

t = 0,285s  

The objective function is defined as a distance between two nodes belonging to opposite 

spans which are closest to each other. We try to diminish this distance to zero. Unfortunately, 

we do not know which nodes will collide and when will it happen (this time could be different 

for each package). We also cannot decompose the problem to the series of simpler ones.  For 

the simplicity we assume linear decrease of pressure so we have only two design variables in 

every package. In this formulation we do not assume admissible shape of deformation based 

on condition of collision between nodes 1

SqΓ  and maximal displacement 2

SqΓ . Deformation of 

the structure does not have to be contained in the set qS  defined by (3). 

 

Figure 5: Desired deformation of the structure obtained by means of negative pressures 

The best results for such derived optimization problem were obtained for three cell APS 

with stiff partitions and one sliding support, cf. Fig. 6. By means of compressed air we were 

able to control places of arising plastic hinges. The structure becomes sensitive to the value of 

pressure and deformation shape changes. In the pictures we observe difference between fast 

and slow release of pressure in the middle cell. Applying this release of pressure we are able 

to distribute central concentrated loading into two sides of the frame. Limitation of pressure to 

positive values causes that crushing all three packages is not feasible. 

 

 

 

 

 

 

 

 

 

Figure 6: Deformation corresponding to fast (a) and slow (b) release of pressure in the middle cell. 

Finally, the problem of optimal pressure distribution for different position of loading was 

examined. The strategy of filling with pressure is strongly dependent on the scheme of impact 

so load identification is very important at the preliminary stage of the whole process. In this 

case our goal was to distribute the destruction caused by lateral impact into two adjacent 

packages.  In both cases external packages are most exposed to destruction so we pressurize it 

strongly at the initial stage of impact. Then we can release pressure, but we have to move it to 

the middle cell to avoid its destruction, cf. Fig. 7. 
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Figure 7: Strategy of the pressure distribution during lateral impact: a) over left chamber, b) over right partition 

7 CONCLUSIONS  

• APS is based on a concept of pressurized packages within thin-walled structure and 

controlled pressure outlets (cf. patent pending 
(8)

). 

• Pressurized structure can be easily adapted to different load conditions by means of 

appropriately chosen change of pressure in every package. 

• Dynamic properties of APS can be formulated as nonlinear optimization problem 

• Optimization algorithms were used to: 

  a) increase energy absorption properties  

  b) alleviate results of impact  

  c) introduce the smallest energy to the system 

  d) control kinematic response of the structure 

APS equipped with sensors able to detect and identify (in real time) the impact load can serve 

as on-line adaptive impact absorbing system controlling injection and release of pressure in 

structural sections. The optimal control strategies have to be pre-computed and stored in 

memory of hardware controllers to make the process feasible. Motivations for the particular 

optimization problems discussed in the paper are the following. 

a) Maximization of load capacity (chapter 3) is useful in the process of designing of the 

APS system serving for a given range of loads 

b) and c)  Smoothing impact absorption (chapter 4) or minimizing the gas pressure 

(chapter 5) can be used as the real time strategy of adaptation to the detected (and 

identified) impact load 

c) The formulation presented in chapter 6 can be treated as an alternative for the problem 

discussed in chapter 3.  
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